TEORAIS E FILOSOFIAS DE GRACELI 187

 


quarta-feira, 10 de abril de 2019


coeficiente de transferência térmica ou coeficiente de transferência de calor, em termodinâmica e em engenharia mecânica e química, é usado no cálculo da transferência de calor, tipicamente por convecção ou mudança de fase entre um fluido e um sólido:
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
onde
ΔQ = entrada de calor ou perda de calor, J
h = coeficiente de transferência térmica, W/(m2K)
A = área de superfície de transferência térmica, m2
 = diferença na temperatura entre a área da superfície do sólido e a do fluido circundante, K
 = período de tempo, s
Da equação acima, o coeficiente de transferência de calor é o coeficiente de proporcionalidade entre o fluxo de calor, Q/(AΔt), e a força condutora termodinâmica para o fluxo de calor (i.e., a diferença de temperatura, ΔT).
O coeficiente de transferência de calor tem unidades SI em watt por metro quadrado kelvin: W/(m2K).
Existem numerosos métodos para o cálculo do coeficiente de transferência de calor em diferentes modos de transferência de calor, diferentes fluidos, regimes de fluxo, e sob diferentes condições termohidráulicas. Frequentemente pode ser estimado pela divisão da condutividade térmica do fluido em convecção por uma escala de comprimento. O coeficiente de transferência térmica é frequentemente calculado do número de Nusselt (um número adimensional).

    Correlação de Dittus–Boelter

    Representação esquemática da convecção na presença de um campo gravitacional.
    Uma correlação comum e particularmente simples útil para muitas aplicações é a correlação de transferência de calor de Dittus–Boelter para fluidos em fluxo turbulento. Esta correlação é aplicável quando convecção forçada é o único modo de transferência de calor; i.e., não há ebulição, condensação, radiação significativa, etc. A precisão desta correlação é considerada como sendo de ±15%.
    Para um líquido fluindo em um tubo reto de seção circular com um número de Reynolds entre 10.000 e 120.000 (na faixa de fluxo turbulentoem tubos), quando o número de Prandtl do líquido encontra-se entre 0,7 e 120, para uma localização distante da entrada do tubo (mais que 10 diâmetros do tubo; mais que 50 diâmetros de acordo com alguns autores[1]) ou outros distúrbios de fluxo, e quando a superfície do tubo é hidraulicamente suave, o coeficiente de transferência de calor entre o volume do fluido e a superfície do tubo pode ser expresso como:
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde
     - condutividade do líquido (i.e. água)
     -  - Diâmetro hidráulico
    Nu - Número de Nusselt
       (correlação de Dittus-Boelter)
    Pr - Número de Prandtl
    Re - Número de Reynolds
    n = 0.4 para aquecimento (parede mais quente que o volume do fluido) e 0.33 para resfriamento (parede mais fria que o volume do fluido) .[2]
    As propriedades do fluido necessárias para a aplicação desta equação são avaliadas na temperatura do volume do fluido então evita-se interação.

    Correlação de Thom[editar | editar código-fonte]

    Existem correlações específicas simples para fluidos para o coeficiente de transferência térmica em ebulição. A correlação de Thom é adequada a fluxo de água em ebulição (sub-resfriada ou saturada a pressões até aproximadamente 20 MPa) sob condição onde a contribuição de ebulição nucleada predomina sobre a convecção forçada. Esta correlação é útil para estimativa grosseira da diferença de temperatura esperada dado o fluxo de calor:[3]
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde:
     é a elevação da temperatura de parede acima da temperatura de saturação, K
    q é o fluxo de calor, MW/m2
    P é a pressão da água, MPa
    Note-se que esta correlação empírica é específica para as unidades dadas.

    Coeficiente de transferência térmica de parede de tubos[editar | editar código-fonte]

    A resistência ao fluxo de calor pelo material da parede do tubo pode ser expressa como um "coeficiente de transferência de calor da parede do tubo". Entretanto, necessita-se selecionar se o fluxo de calor é baseado no diâmetro interno ou externo do tubo.
    Selecionando-se a base para o fluxo de calor no diâmetro interno do tubo, e assumindo-se que a espessura da parede do tubo é relativamente pequena em comparação com o diâmetro interno do tubo, então o coeficiente de transferência de calor para a parede do tubo pode ser calculada como se a parede não fosse curva:
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Onde k é a efetiva condutividade térmica do material da parede e x é a espessura da parede.
    Se a suposição não for mantida, então o coeficiente de transferência de calor da parede pode ser calculado usando-se a seguinte expressão:
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde di e do são os diâmetros interno e externo do tubo, respectivamente.
    A condutividade térmica do material do tubo normalmente depende da temperatura; a condutividade térmica média é frequentemente usada.

    Combinando coeficientes de transferência térmica[editar | editar código-fonte]

    Para dois ou mais processos de trasferência de calor atuando em paralelo, coeficientes de transferência térmica simplesmente adicionam-se:
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Para dois ou mais processos de trasferência de calor conectados em série, coeficientes de transferência térmica adicionam-se inversamente:[nota 1]
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Por exemplo, considerando-se um tubo com um fluido fluindo no seu interior. A taxa de transferência de calor entre o volume do fluido dentro do tubo e a superfície externa do tubo é:
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde
    Q = taxa de transferência térmica (W)
    h = coeficiente de transferência térmica (W/(m2·K))
    t = espessura da parede (m)
    k = condutividade térmica da parede (W/m·K)
    A = área (m2)
     = diferença em temperatura.

    Coeficiente de transferência térmica global[editar | editar código-fonte]

    O coeficiente de transferência térmica global  é a medida da habilidade global de uma série de barreiras condutivas e convectivas para transferir calor. É comumente aplicado ao cálculo de transferência de calor em trocadores de calor, mas pode ser aplicado igualmente bem a outros problemas.
    Para o caso do trocador de calor,  pode ser usado para determinar a transferência de calor total entre as duas correntes no trocador de calor pela seguinte relação:
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde
     = taxa de transferência térmica (W)
     = coeficiente de transferência de calor global (W/(m²·K))
     = área de superfície de transferência de calor (m2)
     = diferença de temperatura média logarítmica (K)
    O coeficiente de transferência térmica global leva em conta os coeficientes de transferência térmicas individuais de cada corrente e a resistência do material do tubo. Pode ser calculado como o recíproco da soma de uma série de resistências térmicas (mas existem mais complexas relações, por exemplo quando transferência de calor toma lugar por diferentes rotas em paralelo):
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde
    R = Resistência(s) ao fluxo de calor na parede do tubo (K/W)
    Outros parâmetros como os acima.[4]
    O coeficiente de transferência de calor é o calor transferido por unidade de área por kelvin. Então área é incluida na equaçã como representando a área sobre a qual a transferência de calor toma lugar. As áreas de cada fluxo irão ser diferentes como representam a área de contato com o fluido de cada lado.
    resistência térmica devida a parede do tubo é calculada pela seguinte relação:
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde
    x = espessura da parede (m)
    k = condutividade térmica do material (W/(m·K))
    A = área total do trocador de calor (m2)
    Isto representa a transferência de calor por condução no tubo.
    condutividade térmica é uma característtica particular do material. Valores de condutividades térmica para vários materiais são listados na lista de condutividades térmicas.
    Como mencionado inicialmente no artigo o coeficiente de transferência térmica convectiva para cada corrente depende do tipo de fluido, propriedades do fluxo e da temperatura.
    Alguns típicos coeficientes de transferência de calor incluem:
    • Ar - h = 10 to 100 W/(m2K)
    • Água - h = 500 to 10,000 W/(m2K)

    Resistência térmica devida a depósitos de incrustação[editar | editar código-fonte]

    Superfícies de revestimento podem formar-se sobre superfícies de transferências térmica devido a incrustação. Esta adiciona resistência térmica extra à parede e pode construir diminuir notavelmente o coeficiente de transferência de calor global e então a performance. (Incrustação pode também causar outros problemas.)
    A resistência térmica adicional devida a incrustação pode ser encontrada pela comparação do coeficiente de transferência térmica global determinado de medições laboratoriais com cálculos baseados em correlações teóricas. Elas podem também ser avaliadas do desenvolvimento coeficiente de transferência térmica global com tempo (assumindo-se que o trocador de calor opera sob condições idênticas). Isto é comumente aplicado na prática, e.g..[5] A seguinte relação é frequentemente usada:
     = 
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    onde
     = coeficiente de transferência de calor global baseado em dados experimentais para o trocador de calor no estado "incrustado", 
     = coeficiente de transferência de calor global baseado em dados calculados ou medidos ("trocador de calor limpo"), 
     = resistência térmica devido à incrustação, 













    observação: é usado textos da wikipédia para mostrar as modificações com as variáveis do sistema decadimensional e categorial Graceli.



    teoria da relatividade categorial Graceli

    ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D











    NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

    quinta-feira, 11 de abril de 2019


    Energia de ligação Nuclear[editar | editar código-fonte]

    Núcleos atómicos contendo protões electrizados positivamente e neutrões não eletrizados perfazem sistemas estáveis apesar do facto de que os protões experimentam repulsão de Coulomb. A estabilidade dos núcleos é uma indicação de que deve existir uma espécie de força de ligação entre os nucleões. A força de ligação pode ser investigada na base considerações energéticas apenas, sem evocar quaisquer considerações que dizem respeito à natureza e propriedades das forças nucleares.
    A ideia sobre a intensidade das forças de ligação no sistema pode ser obtida a partir do esforço necessário para quebrá-lo, isto é, para realizar trabalho contra as forças de ligação.
    Este procedimento leva aos vários fatos importantes sobre as forças que mantém os nucleões no núcleo. A energia necessária para remover qualquer nucleão do interior do núcleo é chamada energia de ligação (ou separação) do nucleão no núcleo. É igual ao trabalho que deve ser realizado para remover o nucleão a partir do núcleo sem comunicar-lhe qualquer energia cinética.
    A energia de ligação total do núcleo é definida como o valor do trabalho que deve ser realizado para quebrar o núcleo em seus nucleões constituintes. A partir da lei de conservação de energia segue que ao formar o núcleo, a mesma quantidade de energia deve ser libertada como a que foi fornecida ao núcleo para quebrá-lo.
    O valor da energia de ligação dos núcleos pode ser estimado a partir das seguintes considerações. Foi descoberto que a massa em repouso de qualquer núcleo permanentemente estável é menor do que a soma das massas em repouso dos nucleões que ele contém. Tudo se passa como se, ao ´´empacotar´´ os protões e neutrões para formar o núcleo, eles perdessem alguma de suas massas.
    Uma explicação desse fenômeno é dada pela teoria da relatividade especial. Este fato é levado em conta pela conversão duma parte da massa das partículas em energia de ligação. A energia de repouso do corpo, , é relacionada à sua massa de repouso  pela expressão:
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Onde c é a velocidade da luz no vácuo. Designando a energia libertada durante a formação do núcleo como , então a massa equivalente da energia de ligação total
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    é o decréscimo na massa em repouso a medida que os nucleões se juntam para formar o núcleo. A grandeza  é também conhecida como defeito de massa ou decremento de massa. Se um núcleo de massa M é composto de um número Z de protões com massa  e dum número A - Z de neutrões com a massa  , a grandeza  é dada por:
    A grandeza  dá a medida da energia de ligação,
    Na Física Nuclear, as energias são expressas em unidades de energia atómicas (uea) correspondendo à unidades de massa atómica:
    Assim, para determinar a energia de ligação em MeV, deverá se usar a equação:
    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Onde as massas dos nucleões e a massa do núcleo são expressos em unidades de massa atómica. Em média, a energia de ligação por nucleão é cerca de 8 MeV, a qual é justamente um valor grande.














    observação: é usado textos da wikipédia para mostrar as modificações com as variáveis do sistema decadimensional e categorial Graceli.



    teoria da relatividade categorial Graceli

    ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D











    NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

    domingo, 14 de abril de 2019





    momento magnético nuclear é o momento magnético de um núcleo atômico e surge a partir da rotação dos prótons e nêutrons. É principalmente um momento de dipolo magnético.
    O momento magnético nuclear varia de isótopo para isótopo dependendo do elemento. Podendo só ser zero se o número de prótons e nêutrons são ambos o mesmo.

      Fatores-g

      Os valores de g(l) e g(s) são conhecidos como o fatores G dos núcleos.
      Os valores medidos de g(l) para o nêutron e o próton são de acordo com a suas cargas elétricas. Assim, em unidades de magnetão nuclear, g(l) = 0 para o nêutron e g(l) = 1 para o próton
      Os valores medidos de g(s) para o nêutron e o próton são duas vezes o seu momento magnético. Nas unidades de magnetão nuclear , g(s) = -3.8263 para o nêutron e g(s) = 5.5858 para o próton.

      Calculando o momento magnético nuclear[editar | editar código-fonte]

      No modelo nuclear de camadas, o momento magnético de um nucleon de momento angular total j, o momento angular orbital l e spin s, é dado por:
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      Ao projetar com o momento angular total j ,temos
       
       em contribuições tanto do momento angular orbital e do spin, com diferentes coeficientes g(l) e g(s):
      substituindo para a fórmula de cima e reescrevendo
       
      x
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
      Para um único nucleon . Para  nós temos
      e para 
      x
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D














      Observação: é usado textos da wikipédia para mostrar as modificações com as variáveis do sistema decadimensional e categorial Graceli.


      O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

      O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


      Com isto pode-se dividir a física em quatro grandes fases:

      a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




      teoria da relatividade categorial Graceli

      ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli.
      x
      sistema de transições de estados, e estados  de Graceli, 
      x
      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D











      NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


      Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


      Estados térmico.
      Estado quântico.
      De dilatação.
      De entropia.
      De potencia de entropia e relação com dilatação.
      De magnetismo [correntes, momentum e condutividades]..
      De eletricidade [correntes, momentum e condutividades].
      De condutividade.
      De mometum e fluxos variados.
      De potencial inercial da matéria e energia.
      De transformação.
      De comportamento de cargas e interações com elétrons.
      De emaranhamentos e transemaranhamentos.
      De paridades e transparidades.
      De radiação.
      Radioatividade.
      De radioisótopos.
      De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
      De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

      De resistir à temperaturas.
      E transformar em dilatação, interações entre partículas, energias e campos.
      Estado dos padrões de variações e efeitos variacionais.
      Estado de incerteza dos fenômenos e entre as suas interações.


      E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


      E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



      Sobre padrões de entropia.

      Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


      Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


      Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


      A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


      Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


      Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


      Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


      Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


      Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


      Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


      Princípio tempo instabilidade de Graceli.

      Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


      Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


      as dimensões categorias podem ser divididas em cinco formas diversificadas.

      tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



      paradox of the system of ten dimensions and categories of Graceli.



      a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



      that is, categories ground the variables of phenomena and their interactions and transformations.



      and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



      but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



      as well as transitions of energies, phenomena, categories and dimensions.

      paradoxo do sistema de dez dimensões e categorias de Graceli.

      um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

      ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

      e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

      mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

      como também transições de energias, fenômenos, categorias e dimensões.







       = entropia reversível

      postulado categorial e decadimensional Graceli.

      TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


      todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
      matriz categorial Graceli.

      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      1] Cosmic space.
      2] Cosmic and quantum time.
      3] Structures.
      4] Energy.
      5] Phenomena.
      6] Potential.
      7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
      8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
      9] thermal specificity, other energies, and structure phenomena, and phase transitions.
      10] action time specificity in physical and quantum processes.




      Sistema decadimensional Graceli.

      1]Espaço cósmico.
      2]Tempo cósmico  e quântico.
      3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
      4]Energias.
      5]Fenômenos.
      6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
      7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
      8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
      9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
      10] especificidade de tempo de ações em processos físicos e quântico.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      Matriz categorial de Graceli.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               Dl


      Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

      [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
      trans-intermecânica de supercondutividade no sistema categorial de Graceli.

      EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

      p it = potentials of interactions and transformations.
      Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

      h e = quantum index and speed of light.

      [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


      EPG = GRACELI POTENTIAL STATUS.

      [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

      , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

      quinta-feira, 11 de abril de 2019









      teoria clássica de campos é uma teoria física que descreve o estudo de como um ou mais campos físicos interagem com a matéria. A palavra "clássica" é usada em contraste com as teorias de campo que incorporam a mecânica quântica (teoria quântica de campos).
      Um campo físico pode ser pensado como a atribuição de uma quantidade física em todos os pontos do espaço e do tempo. Por exemplo, numa previsão do tempo, a velocidade do vento durante o dia em um país é descrita através da atribuição de um vetor para cada ponto no espaço. Cada vetor representa a direção do movimento do ar naquele momento. À medida que o dia passa, as direções dos vetores mudam à medida que a direção do vento muda. Do ponto de vista matemático, campos clássicos são descritos por um conjunto de vetores (teoria clássica de campos covariante). A expressão "teoria clássica de campos" é comumente reservada para descrever as teorias físicas sobre eletromagnetismo e gravitação, duas das forças fundamentais da natureza.
      A descrição de campos físicos começou antes do advento da teoria da relatividade e em seguida foi revista à luz desta teoria. Conseqüentemente, as teorias clássicas de campos geralmente são classificadas como não-relativista e relativista.
      Atualmente, seu desenvolvimento se associa a áreas da matemática como teoria de gruposálgebras e representações, e até mesmo de topologia. É uma área de interesse para os pesquisadores que trabalham com sistemas não linearessistemas exatamente integráveis e sólitons.

        Teorias de campos não-relativistas[editar | editar código-fonte]

        Alguns dos campos físicos mais simples são os de força vetorial. Historicamente, os campos foram levados a sério pela primeira vez com as linhas de força de Faraday, ao descrever o campo elétrico. O campo gravitacional foi descrito então da mesma forma.

        Gravitação newtoniana[editar | editar código-fonte]

        Uma teoria clássica de campos sobre a gravidade é a gravitação newtoniana, que descreve a força gravitacional como uma interação mútua entre duas massas.
        Em um campo gravitacional, se uma partícula de prova de massa gravitacional m experimenta uma força F, então a força do campo gravitacional g é definida por "g = F / m", onde é necessário que a massa de prova m seja pequena o suficiente para que sua presença efetivamente não perturbe o campo gravitacional. A lei da gravitação de Newton diz que duas massas separadas por uma distância r experimenta uma força
        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
        onde  é um vetor unitário que aponta para um dos objetos. Usando a segunda lei de Newton (para massa inercial constante), F = ma leva a uma definição da intensidade do campo gravitacional devido a uma massa m:
        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
        A observação experimental de que as massas inercial e gravitacional são iguais leva à identificação da intensidade do campo gravitacional como idêntico à aceleração experimentada por uma partícula. Este é o ponto de partida do princípio da equivalência, que leva a relatividade geral.

        Eletrostática[editar | editar código-fonte]

        Ver artigo principal: Eletrostática
        Uma partículas de teste carregada, de carga q, experimenta uma força F proveniente unicamente em sua carga. Podemos igualmente descrever o campo elétrico E de modo que F = qE. Usando isto e o conteúdo da lei de Coulomb, definimos o campo elétrico devido a uma única partícula carregada como
        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

        Magnetismo[editar | editar código-fonte]

        Ver artigo principal: Magnetismo

        Hidrodinâmica[editar | editar código-fonte]

        Ver artigo principal: Hidrodinâmica

        Teoria de campos relativística[editar | editar código-fonte]

        Formulações modernas para teorias clássicas de campos geralmente requerem a covariância de Lorentz, pois isto hoje é reconhecido como um aspecto fundamental da natureza. Uma teoria de campos tende a ser expressa matematicamente com Lagrangianas. Esta é uma função que, quando submetida a um princípio de ação, dá origem às equações de campo e uma lei de conservação para a teoria.
        Usamos um sistema de unidades onde c = 1.

        Dinâmica lagrangiana[editar | editar código-fonte]

        Ver artigo principal: Lagrangiana
        Dado um campo tensorial , um escalar chamado de densidade Lagrangiana  pode ser construído a partir de  e suas derivadas.
        A partir desta densidade, o funcional ação pode ser construído através da integração ao longo do espaço-tempo:
        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
        Em seguida, através da aplicação do Princípio da mínima ação, as equações de Euler-Lagrange são obtidas:
        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

        Campos Relativísticos[editar | editar código-fonte]

        Duas das teorias clássicas de campos covariante de Lorentz mais conhecidas são agora descritas.

        Eletromagnetismo[editar | editar código-fonte]

        Ver artigos principais: Campo eletromagnético e Eletromagnetismo
        Historicamente, as primeiras teorias (clássicas) de campos foram as que descrevem os campos elétrico e magnético (separadamente). Depois de inúmeras experiências, verificou-se que esses dois campos estão relacionados, ou, na verdade, dois aspectos do mesmo campo: o campo eletromagnético. A teoria eletromagnética de Maxwelldescreve a interação da matéria carregada com o campo eletromagnético. A primeira formulação dessa teoria de campos utilizou campos de vetores para descrever os campos elétrico e magnético. Com o advento da relatividade especial, uma formulação melhorada (e mais consistente com a mecânica) utilizando campos tensoriais foi obtida. Em vez de usar dois campos de vetores que descrevem os campos elétrico e magnético, é usado um campo tensorial que representa esses dois campos.
        Temos o potencial eletromagnético, e a quadricorrente . O campo eletromagnético em qualquer ponto do espaço-tempo é descrito pelo tensor do campo eletromagnético anti-simétrico de ordem 2
        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

        A Lagrangiana[editar | editar código-fonte]

        Para obter a dinâmica para este campo, tentamos construir um escalar a partir do campo. No vácuo, temos  Podemos usar a teoria de campos de calibre para obter o termo de interação, e isso nos fornece
        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

        As Equações[editar | editar código-fonte]

        Isto juntamente com as equações de Euler-Lagrange fornece o resultado desejado, já que as equações de Euler-Lagrange dizem que
        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
        É fácil ver que . O lado esquerdo é mais complicado. Tomando cuidado com os fatores de , no entanto, o cálculo fornece . Juntas, as equações de movimento são então
        Isto nos fornece uma equação vetorial, que são as equações de Maxwell no vácuo. As outras duas são obtidas do fato de que F é o 4-rotacional de A:
        onde a vírgula indica derivada parcial.

        Gravitação[editar | editar código-fonte]

        Ver artigos principais: Gravitação e Relatividade Geral
        Após a gravitação de Newton ser considerada inconsistente com a relatividade especialAlbert Einstein formulou uma nova teoria da gravitação chamada de relatividade geral. Esta trata a gravidade como um fenômeno geométrico ("espaço-tempo curvo"), causado pela matéria e representa o campo gravitacional matematicamente por um campo tensorial chamado tensor métrico. As equações de campo de Einstein descrevem como tal curvatura é produzida. As equações de campo podem ser diferenciadas usando-se a ação de Einstein-Hilbert. Variando-se a Lagrangiana
        ,
        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
        onde  é o tensor de Ricci escrito em termos do tensor de Ricci  e do tensor métrico , que levam às equações de campo no vácuo,
        ,
        onde  é o tensor de Einstein.
        x
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D






        observação: é usado textos da wikipédia para mostrar as modificações com as variáveis do sistema decadimensional e categorial Graceli.



        teoria da relatividade categorial Graceli

        ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli.
        x
        sistema de transições de estados, e estados  de Graceli, 
        x
        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D











        NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


        Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


        Estados térmico.
        Estado quântico.
        De dilatação.
        De entropia.
        De potencia de entropia e relação com dilatação.
        De magnetismo [correntes, momentum e condutividades]..
        De eletricidade [correntes, momentum e condutividades].
        De condutividade.
        De mometum e fluxos variados.
        De potencial inercial da matéria e energia.
        De transformação.
        De comportamento de cargas e interações com elétrons.
        De emaranhamentos e transemaranhamentos.
        De paridades e transparidades.
        De radiação.
        Radioatividade.
        De radioisótopos.
        De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
        De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

        De resistir à temperaturas.
        E transformar em dilatação, interações entre partículas, energias e campos.
        Estado dos padrões de variações e efeitos variacionais.
        Estado de incerteza dos fenômenos e entre as suas interações.


        E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


        E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



        Sobre padrões de entropia.

        Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


        Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


        Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


        A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


        Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


        Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


        Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


        Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


        Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


        Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


        Princípio tempo instabilidade de Graceli.

        Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


        Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


        as dimensões categorias podem ser divididas em cinco formas diversificadas.

        tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



        paradox of the system of ten dimensions and categories of Graceli.



        a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



        that is, categories ground the variables of phenomena and their interactions and transformations.



        and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



        but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



        as well as transitions of energies, phenomena, categories and dimensions.

        paradoxo do sistema de dez dimensões e categorias de Graceli.

        um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

        ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

        e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

        mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

        como também transições de energias, fenômenos, categorias e dimensões.







         = entropia reversível

        postulado categorial e decadimensional Graceli.

        TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


        todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
        matriz categorial Graceli.

        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        1] Cosmic space.
        2] Cosmic and quantum time.
        3] Structures.
        4] Energy.
        5] Phenomena.
        6] Potential.
        7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
        8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
        9] thermal specificity, other energies, and structure phenomena, and phase transitions.
        10] action time specificity in physical and quantum processes.




        Sistema decadimensional Graceli.

        1]Espaço cósmico.
        2]Tempo cósmico  e quântico.
        3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
        4]Energias.
        5]Fenômenos.
        6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
        7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
        8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
        9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
        10] especificidade de tempo de ações em processos físicos e quântico.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


        Matriz categorial de Graceli.


        T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 Dl


        Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

        [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
        trans-intermecânica de supercondutividade no sistema categorial de Graceli.

        EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

        p it = potentials of interactions and transformations.
        Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

        h e = quantum index and speed of light.

        [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


        EPG = GRACELI POTENTIAL STATUS.

        [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

        , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

        sexta-feira, 12 de abril de 2019





        teoria quântica de campos (abreviada para TQC ou QFT, do inglês, Quantum field theory) é um conjunto de ideias e técnicas matemáticas usadas para descrever quanticamente sistemas físicos que dispõem de um número infinito de graus de liberdade. TQC fornece a estrutura teórica usado em diversas áreas da física, tais como física de partículas elementarescosmologia e física da matéria condensada [1][2].
        O arquétipo de uma teoria quântica de campos é a eletrodinâmica quântica (tradicionalmente abreviada como QED, do inglês Quantum Eletrodynamics), e que descreve essencialmente a interação de partículas eletricamente carregadas através da emissão e absorção de fótons.
        Dentro desse paradigma, além da interação eletromagnética, tanto a interação fraca quanto a interação forte são descritas por teorias quânticas de campos, que reunidas formam o que conhecemos por Modelo Padrão que considera tanto as partículas que compõem a matéria (quarks e léptons) quanto as partículas mediadoras de forças (bósons de gauge) como excitações de campos fundamentais[3].

          História[editar | editar código-fonte]

          Advento da teoria clássica dos campos[editar | editar código-fonte]



          Pode-se considerar que a noção de campo surgiu inicialmente como uma construção matemática na descrição da gravitação newtoniana. No século XIX, tal formalismo logo foi estendido tanto para fenômenos elétricos quanto magnéticos por físicos como AmpèreOhm e Faraday.
          Devido aos trabalhos de Maxwell, o conceito de campo passa a ocupar o papel de maior importância na descrição fenomenológica da realidade. Maxwell mostrou, através de um conjunto de equações que recebem seu nome, que os fenômenos magnéticos e elétricos estão intrinsecamente associados e que devem ser descritos por uma única entidade: o campo eletromagnético [4].
          Conceitualmente, Maxwell mostrou a relação entre campos elétricos e magnéticos, bem como o reconhecimento de que a luz (óptica) é uma manifestação particular deste campo eletromagnético. Dentro dessa perspectiva histórica, a unificação dos fenômenos eletromagnéticos realizado por Maxwell foi a segunda grande unificação, a primeira sendo a unificação da dinâmica celeste e terrestre realizada por Isaac Newton ainda no século XVII [5].

          Mecânica, Eletromagnetismo e Relatividade[editar | editar código-fonte]

          eletromagnetismo foi a "raison d’être" do surgimento da relatividade. Com a inadequação das transformações de Galileu quando aplicadas à equação de onda tridimensional, surgiu um dilema: ou se preservava a mecânica clássica e abandonava-se o nascente eletromagnetismo, ou se preservava este e abandonava-se quase três séculos de previsões solidamente confirmadas pela experimentação.
          O caminho foi achado, surpreendemente, numa espécie de conciliação entre as duas alternativas.
          Inicialmente, Woldemar Voigt derivou em 1887 um conjunto de relações, baseado apenas na equação de onda ordinária, devida a Jean D'Alembert. Essas relações eram transformações espaciais e temporais que deixavam invariante a forma desta equação.
          Estas relações são as que se conhecem como transformações de Lorentz-Fitzgerald, cientistas que redescobriram estas transformações mais tarde. Em particular, Lorentz o fez num contexto diferente, na tentativa de se reconciliar as teorias do éter com os resultados de experiências físicas, tais como a de Michelson-MorleyEinstein então entra em cena, com seu trabalho seminal de 1905, "Sobre a Eletrodinâmica dos Corpos em Movimento", onde introduz a relatividade, interpretando corretamente as transformações de Lorentz-Fitzgerald como alterações do espaço e do tempo em função da velocidade relativa entre os referenciais.

          Termodinâmica e mecânica quântica[editar | editar código-fonte]


          A tentativa de derivação feita por Lord Rayleigh e por James Jeans postulava que cada onda eletromagnética estava em equilíbrio com as paredes do forno. Isso se traduz num teorema que mantém sua validade mesmo na mecânica quântica:A mecânica quântica surgiu da incapacidade conjunta da termodinâmica e do eletromagnetismo clássicos de prever a correta distribuição de energias em função da frequência no problema da radiação de corpo negro.
          Numa cavidade fechada em equilíbrio térmico com o campo eletromagnético confinado, o campo é equivalente a um conjunto enumeravelmente infinito de osciladores harmônicos, e a sua energia é igual à soma das energias desses osciladores. Cada frequência corresponde aos osciladores tomados dois a dois.
          Max Planck obteve a forma correta da distribuição porque postulou a quantização da energia dos osciladores harmônicos que comporiam as paredes da cavidade que confina a radiação. Essa hipótese teve por efeito introduzir um limite máximo de freqüência acima do qual há um corte (cutoff) nas contribuições dos entes (ondas eletromagnéticas) que estão em equilíbrio.
          Einstein, para explicar o efeito fotoelétrico, ampliou o conceito da quantização para a energia radiante, postulando a existência do fóton (o que "implicitamente" quer dizer que as equações de Maxwell não tem validade ilimitada, porque a existência do fóton implica não-linearidades).
          A antiga teoria quântica cedeu lugar à mecânica quântica moderna quando Schrödinger desenvolveu a famosa equação que leva o seu nome. Entretanto, a primeira versão que ele desenvolveu foi a equação que hoje é conhecida como equação de Klein-Gordon, que é uma equação relativista, mas que não descrevia bem o átomo de hidrogênio, por razões que só mais tarde puderam ser entendidas. Assim, ele abandonou a primeira tentativa, chegando à sua equação (equação de Schrödinger):
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          A equação de Schrödinger acima colocada é a equação "dependente do tempo", pois o tempo aparece explicitamente. Neste caso, as soluções  são funções das coordenadas espaciais e do tempo.
          Quando o potencial  não depende do tempo, ou seja, quando o campo de força ao qual a partícula está submetida é conservativo, é possível separar as variáveis  e .
          A equação que a parte espacial da função de onda  obedece é:
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          conhecida como equação de Schrödinger "independente do tempo". Esta é uma equação de autovalores, ou seja, através dela se obtêm simultaneamente autofunções (no caso as funções de onda ) e autovalores (no caso, o conjunto das energias estacionárias ).

          Formulação matemática[editar | editar código-fonte]

          Mecânica clássica e mecânica quântica[editar | editar código-fonte]

          A dinâmica de uma partícula pontual de massa  em um regime não-relativístico, ou seja, em velocidades muito menores que a velocidade da luz, pode ser determinada através da função lagrangiana [6][7] 
          ,
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          em que  (que são respectivamente coordenadas generalizadas para a posição e a velocidade da partícula) determinam o espaço de fase do sistema e  é o potencial em que a partícula se move. Minimizando o funcional ação
          
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          encontra-se a equação de movimento para esse sistema,
          ,
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          que é a equação de Newton, desde que 
          Existe outra formulação equivalente da mecânica clássica, conhecida como formulação hamiltoniana e que pode ser diretamente relacionada a formulação lagrangiana acima. Para se fazer contato entre as duas formulações, define-se o momento  
          ,
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          de maneira que a função hamiltoniana é dada por
          ,
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          que para a escolha da lagrangiana acima, tem-se
          .
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          Assim como no caso da função lagrangiana, a hamiltoniana descreve toda a dinâmica de um sistema clássico, portanto, considerando uma variação de  tem-se um par de equações diferenciais de primeira ordem conhecidas como equações de Hamilton 
          ,
          e que equivale a equação de Newton, que é de segunda ordem. No formalismo hamiltoniano, usando a regra da cadeia, pode-se escrever qualquer variação temporal de uma função , em termos das equações de Hamilton acima, de modo que,
          
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          onde o parêntese de Poisson é definido como
          .
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          Existem diversas maneiras de realizar a quantização de um sistema clássico, tais como quantização por integrais funcionais e quantização canônica. Esse último método em particular, consiste na substituição do parêntese de Poisson por comutadores[8]
          ,
          onde , são operadores num espaço de Hilbert. Com essas substituições, o parêntese de Poisson entre duas coordenadas generalizadas torna-se
          .
          Um aspecto importante a ser observado é que os operadores  e  podem ser representados como os operadores diferencias
          
          de maneira que a função hamiltoniana, torna-se um operador no espaço de Hilbert, chamado operador hamiltoniano que atua em uma função 
          ,
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D

          Teoria Clássica de Campos[editar | editar código-fonte]

          A formulação lagrangiana e a hamiltoniana da mecânica clássica são refinamentos da mecânica newtoniana e permite o tratamento de sistemas com um número finito de graus de liberdade. Considerando um sistema mecânico unidimensional com  graus de liberdade, que consiste de  partículas pontuais de massa , separadas por uma distância e conectadas entre si por uma mola de constante elástica . A lagrangiana para esse sistema é:
          .
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          Esse sistema pode ser estendido facilmente para o limite em que  e . No entanto, se o comprimento total do sistema estiver fixo, tem-se o limite contínuo , de modo que a lagrangiana terá a forma
          ,
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          onde  representa o deslocamento da partícula relativa a posição  no instante de tempo . Também, define-se as quantidades  .
          Generalizando essa discussão prévia para um sistema relativístico, tem-se uma lagrangiana que será uma função do campo , em que  e das derivadas , dessa maneira, o funcional ação pode ser escrito como
          .
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          Finalmente, a lagrangiana pode ser escrita como
          ,
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          onde , é conhecida como densidade lagrangiana [9]. A equação de Euler-Lagrange é:
          .
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D

          Primeiras unificações. Equações relativísticas[editar | editar código-fonte]

          Question book.svg
          Esta seção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde fevereiro de 2018). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
          Encontre fontes: Google (notíciaslivros e acadêmico)

          Equação de Klein-Gordon[editar | editar código-fonte]

          Como foi dito acima, quando Schrödinger primeiro procurou uma equação que regesse os sistemas quânticos, pautou sua busca admitindo uma aproximação relativista, encontrando a depois redescoberta equação de Klein-Gordon:
          onde
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          A equação de Klein-Gordon, às vezes chamada de equação de Klein-Fock-Gordon (ou ainda Klein-Gordon-Fock) pode ser deduzida de algumas maneiras diferentes.
          Usando-se a definição relativística de energia
          chega-se à equação:
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          Essa expressão, por conter operadores diferenciais sob o radical, além de apresentar dificuldades computacionais, também apresenta dificuldades conceituais, já que se torna uma teoria não-local (pelo fato de a raiz poder ser expressa como uma série infinita). Por ser uma equação de segunda ordem não permite que fique bem definida a questão da normalização da função de onda.
          Fock deduziu-a através da generalização da equação de Schrödinger para campos magnéticos (onde as forças dependem da velocidade). Fock e Klein usaram ambos o método de Kaluza-Klein para deduzi-la. O motivo, só mais tarde entendido, da inadequação desta equação ao átomo de hidrogênio é que ela se aplica bem somente a partículas sem carga e de spin nulo.

          Equação de Dirac[editar | editar código-fonte]

          Em 1928 Paul Dirac obteve uma equação relativística baseada em dois princípios básicos
          1. A equação deveria ser linear na derivada temporal;
          2. A equação deveria ser relativisticamente covariante.
          A equação obtida por ele tinha a seguinte forma:
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          onde  e  não são números reais ou complexos, mas sim matrizes quadradas com N² componentes. Semelhantemente, as funções  são na verdade matrizes coluna da forma
          e as matrizes  e  devem ser hermitianas.
          A equação de Dirac, diferentemente da equação de Klein-Gordon, é uma equação que dá bons resultados para partículas de spin ½. Aliás, um dos sucessos é que esta equação incorpora o spin de forma natural, o que não ocorre com a equação de Schrondinger, onde o spin é admitido posteriormente como uma hipótese ad hoc. Não obstante, isso levou certos autores a afirmarem que o spin é um grau de liberdade relativístico, o que é contestado. Outro sucesso da equação de Dirac foi prever a existencia do pósitron, já que a equação previa valores negativos de energia, o que foi inicialmente interpretado, à luz da [[teoria dos buracos], como indicação de elétrons com energias negativas. Essa teoria afirmava que os pósitrons seriam vacâncias produzidas pela promoção desses elétrons para estados com energias positivas. O vácuo é então visto como um mar de elétrons onde eles estariam compactamente colocados. Hoje, entretanto, essa teoria cedeu lugar à questão de criação e aniquilação de partículas num contexto mais geral da quantização canônica dos campos.

          Desenvolvimento da teoria quântica dos campos[editar | editar código-fonte]

          A origem da teoria quântica dos campos é marcada pelos estudos de Max Born e Pascual Jordan em 1925 sobre o problema da computação da potência irradiada de um átomo em uma transição energética.
          Em 1926, Born, Jordan e Werner Heisenberg formularam a teoria quântica do campo eletromagnético desprezando tanto a polarização como a presença de fontes, levando ao que se chama hoje de uma teoria do campo livre. Para tanto, usaram o procedimento da quantização canônica.
          Três razões principais motivaram o desenvolvimento da teoria quântica dos campos:
          • A necessidade da uma teoria que lidasse com a variação do número de partículas;
          • A necessidade de conciliação entre as duas teorias: mecânica quântica e a relatividade;
          • A necessidade de lidar com estatísticas de sistemas multipartículas.

          Quantização canônica dos campos[editar | editar código-fonte]

          Um campo, no esquema conceitual da teoria dos campos, é uma entidade com infinitos graus de liberdade.
          O estado de mais baixa energia, chamado de vácuo, corresponde à ausência de partículas.
          Estas, entretanto, podem ser criadas ou destruídas através de dois operadores:
          • : operador criação
          • : operador aniquilação
          que agem sobre a função de onda do campo, respectivamente simbolizando a criação e a aniquilação de partículas dotadas de momento , possibilidade exigida pela relatividade.
          Os operadores, agindo sobre os estados de um tipo específico de espaço de Hilbert, chamado espaço de Fock, criam e destroem as partículas. Entretanto, uma restrição é:
          o que quer dizer que não pode haver aniquilação sobre o estado básico, já que nesse caso não há partículas a serem aniquiladas.











          Observação: é usado textos da wikipédia para mostrar as modificações com as variáveis do sistema decadimensional e categorial Graceli.


          O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

          O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


          Com isto pode-se dividir a física em quatro grandes fases:

          a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




          teoria da relatividade categorial Graceli

          ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D











          NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


          Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


          Estados térmico.
          Estado quântico.
          De dilatação.
          De entropia.
          De potencia de entropia e relação com dilatação.
          De magnetismo [correntes, momentum e condutividades]..
          De eletricidade [correntes, momentum e condutividades].
          De condutividade.
          De mometum e fluxos variados.
          De potencial inercial da matéria e energia.
          De transformação.
          De comportamento de cargas e interações com elétrons.
          De emaranhamentos e transemaranhamentos.
          De paridades e transparidades.
          De radiação.
          Radioatividade.
          De radioisótopos.
          De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
          De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

          De resistir à temperaturas.
          E transformar em dilatação, interações entre partículas, energias e campos.
          Estado dos padrões de variações e efeitos variacionais.
          Estado de incerteza dos fenômenos e entre as suas interações.


          E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


          E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



          Sobre padrões de entropia.

          Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


          Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


          Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


          A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


          Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


          Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


          Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


          Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


          Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


          Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


          Princípio tempo instabilidade de Graceli.

          Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


          Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


          as dimensões categorias podem ser divididas em cinco formas diversificadas.

          tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



          paradox of the system of ten dimensions and categories of Graceli.



          a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



          that is, categories ground the variables of phenomena and their interactions and transformations.



          and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



          but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



          as well as transitions of energies, phenomena, categories and dimensions.

          paradoxo do sistema de dez dimensões e categorias de Graceli.

          um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

          ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

          e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

          mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

          como também transições de energias, fenômenos, categorias e dimensões.







           = entropia reversível

          postulado categorial e decadimensional Graceli.

          TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


          todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
          matriz categorial Graceli.

          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D


          1] Cosmic space.
          2] Cosmic and quantum time.
          3] Structures.
          4] Energy.
          5] Phenomena.
          6] Potential.
          7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
          8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
          9] thermal specificity, other energies, and structure phenomena, and phase transitions.
          10] action time specificity in physical and quantum processes.




          Sistema decadimensional Graceli.

          1]Espaço cósmico.
          2]Tempo cósmico  e quântico.
          3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
          4]Energias.
          5]Fenômenos.
          6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
          7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
          8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
          9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
          10] especificidade de tempo de ações em processos físicos e quântico.


          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D


          Matriz categorial de Graceli.


          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   Dl


          Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

          [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
          trans-intermecânica de supercondutividade no sistema categorial de Graceli.

          EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

          p it = potentials of interactions and transformations.
          Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

          h e = quantum index and speed of light.

          [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


          EPG = GRACELI POTENTIAL STATUS.

          [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

          , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

          quarta-feira, 17 de abril de 2019



          fotão (português europeu) ou fóton (português brasileiro) é a partícula elementar mediadora da força eletromagnética. O fóton também é o quantum da radiação eletromagnética (incluindo a luz). O termo fóton foi criado por Gilbert N. Lewis em 1926[2]. Fótons são bósons e possuem Spin igual a um. A troca de fótons (virtuais1) entre as partículas como os elétrons e os prótons é descrita pela eletrodinâmica quântica, a qual é a parte mais antiga do Modelo Padrão da física de partículas. Ele interage com os elétrons e núcleo atômico sendo responsável por muitas das propriedades da matéria, tais como a existência e estabilidades dos átomosmoléculas, e sólidos.
          Em alguns aspectos um fóton atua como uma partícula, sendo a explicação satisfatória para esse efeito foi dada em 1905, por Albert Einstein pelo Efeito fotoelétrico. Em outras ocasiões, um fóton se comporta como uma onda, tal como quando passa através de uma lente ótica. De acordo com a conhecida dualidade partícula-onda da mecânica quântica, é natural para um fóton apresentar ambos aspectos na sua natureza, de acordo com as circunstâncias que se encontra. Normalmente, a luz é formada por um grande número de fótons, tendo a sua intensidade ou brilho ligada ao número deles. Para baixas intensidades, são necessários equipamentos muito sensíveis, como os usados em astronomia, para detectar fótons individuais.

          Um fóton é usualmente representado pelo símbolo  (gama), embora em física de altas energias este símbolo se refira a fótons de energias extremamente altas (um raio gama).

          Propriedades[editar | editar código-fonte]

          Os fótons são comumente associados com a luz visível, o que só é verdade para uma parte muito limitada do espectro eletromagnético. Toda a radiação eletromagnética é quantizada em fótons: isto é, a menor porção de radiação eletromagnética que pode existir é um fóton, qualquer que seja seu comprimento de ondafrequênciaenergia ou momento. Fótons são partículas fundamentais que podem ser criados e destruídos quando interagem com outras partículas, mas é conhecido que decaiam por conta própria. [carece de fontes]
          Diferente da maioria das partículas, fótons não tem uma massa intrínseca detectável, ou "massa restante" (que se opõem a massa relativística). Fótons estão sempre se movendo à velocidade da luz (a qual varia de acordo com o meio no qual ela viaja) em relação a todos os observadores. A despeito da sua ausência de massa, fótons têm um momento proporcional a sua frequência (ou inversamente proporcional ao seu comprimento de onda), e seu momento pode ser transferido quando um fóton colide com a matéria (como uma bola de bilhar em movimento transfere seu momento para outra bola). Isto é conhecido como pressão de radiação a qual deve ser algum dia usada como propulsão como um veleiro solar.
          Fótons são desviados por um campo gravitacional duas vezes mais que as predições da mecânica Newtoniana predisse para uma massa viajando a velocidade da luz com o mesmo momento de um fóton. Esta observação é comumente citada como uma evidência que daria suporte a relatividade geral, uma teoria da gravidade de muito sucesso publicada em 1915 por Albert Einstein. Na relatividade geral, os fótons sempre viajam a velocidade da luz em uma linha "reta", depois de se levar em conta a curvatura do espaço-tempo. (Em um espaço curvo, isto é chamado de geodésica).

          Criação[editar | editar código-fonte]

          Fótons são produzidos por átomos quando um elétron de valência move-se de um orbital para outro orbital com (menos ou mais) energia negativa. Fótons também podem ser emitidos por um núcleo instável quando este decai por algum tipo de decaimento nuclear. Além disto, fótons são produzidos sempre que partículas carregadas são aceleradas.
          Átomos continuamente emitem fótons devido suas colisões mútuas. A distribuição do comprimento de onda destes fótons portanto está relacionada a sua temperatura absoluta(usualmente em Kelvin). A distribuição de Maxwell-Boltzmann prevê a possibilidade de um fóton possuir um determinado comprimento de onda ao ser emitido por uma coleção de átomos a uma dada temperatura. O espectro de tais fótons normalmente se encontra entre a faixa da micro-onda e do infravermelho, mas objetos aquecidos irão emitir luz visíveltambém.
          Rádiotelevisãoradar e outros tipos de transmissores usados para telecomunicação e monitoramento remoto rotineiramente criam uma extensa variedade de fótons de baixa-energia pela oscilação de campos elétricos em condutoresMagnetrons emitem fótons coerente usado em fornos micro-ondaTubos Klystron são usados quando as emissões de micro-onda devem ser mais precisamente controladas. Masers e laser criam fótons monocromáticos por emissão estimulada. Fótons mais energéticos podem ser criados por decaimento nuclearaniquilação partícula-antipartícula, e colisão de partículas de alta energia.

          Spin[editar | editar código-fonte]

          Os fótons tem spin 1 e são, portanto, classificados como bósons. Os fótons são os mediadores dos campos eletromagnéticos. Por isto, eles são as partículas que possibilitam que outras partículas interajam com outras partículas eletromagnéticas e com campos eletromagnéticos, por isto eles são também conhecidos como bóson de calibre. Em geral, um bóson com spin 1 deveria possuir três projeções de spin distintas (-1, 0 e 1). Contudo, a projeção zero requer um referencial aonde o fóton esteja em repouso. Devido a sua massa de repouso ser zero, tal referencial não existe, de acordo com a teoria da relatividade. Então os fótons no vácuo sempre viajam a velocidade da luz, e mostram somente duas projeções de spin, correspondendo as duas polarizações circulares opostas. Por causa de sua massa intrínseca zero, fótons são consequentemente sempre polarizados transversalmente, da mesma forma que as ondas eletromagnéticas o são, no espaço vazio.

          Estado quântico[editar | editar código-fonte]

          luz visível do Sol, ou de uma lâmpada, é comumente uma mistura de muitos fótons de diferentes comprimentos de onda. Uma visão deste espectro de frequência, pode ser obtida por exemplo pela passagem da luz por um prisma. Neste co-denominado "estado misto", que estas fontes tendem a produzir, a luz se constitui de fótons em equilíbrio térmico (também denominado de radiação de corpo negro). Onde eles são de muita forma, semelhantes às partículas de um gás. Por exemplo, eles exercem pressão, conhecida como pressão de radiação, na qual (em parte) origina a aparência dos cometas quando eles estão viajando próximos ao Sol.
          Por outro lado, um arranjo de fótons também pode existir em estados muito mais bem organizados. Por exemplo, nos denominados estados coerentes, descreve-se uma luz coerente como as emitidas por um laser ideal. O alto grau de precisão obtido com instrumentos a laser advém desta organização.

          Absorção molecular[editar | editar código-fonte]

          Uma molécula típica, , possui vários níveis de energia diferentes. Quando uma molécula absorve um fóton, sua energia aumenta em uma quantidade igual à da energia do fóton. A molécula então entra em um estado excitado.
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D

          Fótons no vácuo[editar | editar código-fonte]

          No espaço vazio, conhecido como vácuo perfeito, todos os fótons se movem a velocidade da luzc, determinada como sendo igual a 299 792 458 metros por segundo, ou aproximadamente 3×108  m  s−1. O metro é definido como a distância percorrida pela luz no vácuo em 1/299 792 458 de um segundo, como a velocidade da luz não oferece qualquer incerteza experimental, diferente do metro ou do segundo, tanto que confiamos no segundo sendo definido por meio de um relógio muito preciso.
          Segundo um princípio da relatividade restrita de Einstein, todas as observações da velocidade da luz no vácuo são as mesmas para todas as direções e para qualquer observador em um referencial inercial. Este princípio é geralmente aceito na física desde que muitas consequências práticas para as partículas de alta-energia tem sido observadas.

          Fótons na matéria[editar | editar código-fonte]

          Quando fótons passam através de material, tal como num prisma, frequências diferentes são transmitidas em velocidades diferentes. Isto é chamado de refração e resulta na dispersão das cores, onde fótons de diferentes frequências saem em diferentes ângulos. Um fenômeno similar ocorre na reflexão onde superfícies podem refletir fótons de várias frequências em diferentes ângulos.
          relação de dispersão associada para fótons é uma relação entre a frequênciaf, e comprimento de onda, λ. ou, equivalentemente, entre sua energiaE, e momentop. Isto é simples no vácuo, desde que a velocidade da onda, v, é dada por
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          As relações quânticas do fóton são:
           e 
          x
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
          Onde h é constante de Planck. Então nós podemos escrever esta relação como:
          que é característica de uma partícula de massa zero. Desta forma vemos como a notável constante de Planck relaciona os aspectos de onda e partícula.
          Em um material, um par de fótons para a excitação do meio e comportamento diferente. Estas excitações podem ser frequentemente descritas como quase-partículas (tais como fónos e excitons); isto é, como onda quantizadas ou entidades quase-partículas propagando-se através da matéria. O "Acoplamento" significa que os fótons podem transformar nesta excitação (isto é, o fóton são absorvidos e o meio excitado, envolvendo a criação das quase-partículas) e vice-versa (as quase-partículas transformam-se de volta em um fóton, ou o meio relaxa pela re-emissão de energia na forma de fótons). Contudo , como estas transformações são as únicas possíveis, eles não estão ligados para acontecer e o que realmente propaga-se através do meio é uma polarização; isto é, uma superposição quântica-mecânica da energia quântica iniciada em um fóton e de uma excitação de uma quase partícula material.
          De acordo com as regras da mecânica quântica, uma medição (aqui: na observação é que acontece a polarização) quebra a superposição; isto é, o quantum é absorvido pelo meio e permanece lá (como acontece em um meio opaco) ou re-emerge como um fóton da superfície para o espaço (como acontece em um meio transparente).
          Excitações no material tem uma dispersão não-linear; isto é; seu momento não é proporcional a sua energia. Portanto, estas partículas se propagam mais devagar do que a velocidade da luz no vácuo. (A velocidade de propagação é a derivada da relação dispersão com seu respectivo momento.) Esta é a razão formal porque a luz é mais lenta em um meio (tal como o vidro) do que no vácuo. (A razão da difração pode ser deduzida disto pelo princípio de Huygens.) Outro meio de explicar isto é dizer que o fóton, por começar a se misturar com o meio excitado para forma a polarização, adquire um efeito de massa, o que significa que ele não pode viajar a c, a velocidade da luz no vácuo.
          Os quanta (plural de quantum) virtuais são partículas hipotéticas trocadas entre partículas carregadas. Se são partículas verdadeiras ou não é um assunto sujeito a uma certa controvérsia. Supõe-se que efeitos como o efeito Casimir sejam provas evidentes da existência de fotões virtuais, embora essa hipótese não seja totalmente aceita.[carece de fontes]












          Observação: é usado textos da wikipédia para mostrar as modificações com as variáveis do sistema decadimensional e categorial Graceli.


          O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

          O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


          Com isto pode-se dividir a física em quatro grandes fases:

          a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




          teoria da relatividade categorial Graceli

          ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli.
          x
          sistema de transições de estados, e estados  de Graceli, 
          x
          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D











          NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


          Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


          Estados térmico.
          Estado quântico.
          De dilatação.
          De entropia.
          De potencia de entropia e relação com dilatação.
          De magnetismo [correntes, momentum e condutividades]..
          De eletricidade [correntes, momentum e condutividades].
          De condutividade.
          De mometum e fluxos variados.
          De potencial inercial da matéria e energia.
          De transformação.
          De comportamento de cargas e interações com elétrons.
          De emaranhamentos e transemaranhamentos.
          De paridades e transparidades.
          De radiação.
          Radioatividade.
          De radioisótopos.
          De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
          De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

          De resistir à temperaturas.
          E transformar em dilatação, interações entre partículas, energias e campos.
          Estado dos padrões de variações e efeitos variacionais.
          Estado de incerteza dos fenômenos e entre as suas interações.


          E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


          E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



          Sobre padrões de entropia.

          Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


          Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


          Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


          A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


          Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


          Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


          Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


          Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


          Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


          Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


          Princípio tempo instabilidade de Graceli.

          Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


          Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


          as dimensões categorias podem ser divididas em cinco formas diversificadas.

          tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



          paradox of the system of ten dimensions and categories of Graceli.



          a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



          that is, categories ground the variables of phenomena and their interactions and transformations.



          and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



          but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



          as well as transitions of energies, phenomena, categories and dimensions.

          paradoxo do sistema de dez dimensões e categorias de Graceli.

          um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

          ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

          e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

          mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

          como também transições de energias, fenômenos, categorias e dimensões.







           = entropia reversível

          postulado categorial e decadimensional Graceli.

          TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


          todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
          matriz categorial Graceli.

          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D


          1] Cosmic space.
          2] Cosmic and quantum time.
          3] Structures.
          4] Energy.
          5] Phenomena.
          6] Potential.
          7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
          8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
          9] thermal specificity, other energies, and structure phenomena, and phase transitions.
          10] action time specificity in physical and quantum processes.




          Sistema decadimensional Graceli.

          1]Espaço cósmico.
          2]Tempo cósmico  e quântico.
          3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
          4]Energias.
          5]Fenômenos.
          6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
          7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
          8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
          9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
          10] especificidade de tempo de ações em processos físicos e quântico.


          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D


          Matriz categorial de Graceli.


          T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   Dl


          Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

          [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
          trans-intermecânica de supercondutividade no sistema categorial de Graceli.

          EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

          p it = potentials of interactions and transformations.
          Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

          h e = quantum index and speed of light.

          [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


          EPG = GRACELI POTENTIAL STATUS.

          [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

          , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

          segunda-feira, 15 de abril de 2019



          Em físicafluxo de uma grandeza física através de uma superfície possui dois significados distintos, dependendo do tipo de fenômeno a que se refere. A principal diferença matemática entre os dois usos é o tipo de grandeza que se obtém.
          • No contexto de Eletromagnetismo, o fluxo é uma grandeza escalar, que descreve a intensidade da atuação de um campo através de uma superfície arbitrária.

            Fluxo de um campo vetorial através de uma superfície[editar | editar código-fonte]

            De acordo com a definição habitualmente utilizada no Eletromagnetismo, define-se o fluxo , escalar, de um campo vetorial  através de uma superfície  orientável qualquer, pela expressão:
            x
            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli.
            x
            sistema de transições de estados, e estados  de Graceli, 
            x
            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D
            onde  representa o vetor infinitesimal de área, orientado perpendicularmente a ela.
            Como realiza-se o produto escalar dessas grandezas vetoriais, o resultado da integral é um escalar. Também é importante notar que o sinal do fluxo irá depender da orientação do vetor , uma vez que há dois sentidos possíveis para a direção perpendicular à superfície . Apesar de matematicamente a escolha ser arbitrária, quando trabalha-se com fluxo magnético, por exemplo, o sinal ganha significado físico e deve ser obtido através da aplicação da lei de Lenz.

            Fluxo elétrico[editar | editar código-fonte]

            Dado um campo elétrico , o fluxo através de uma superfície  fechada é dado por:
            x
            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli.
            x
            sistema de transições de estados, e estados  de Graceli, 
            x
            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D
            fluxo elétrico tem fundamental importância no cálculo do campo elétrico em situações altamente simétricas, por meio da utilização da lei de Gauss, cujo enunciado é:
            x
            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli.
            x
            sistema de transições de estados, e estados  de Graceli, 
            x
            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D
            onde  é a quantidade de carga interna à superfície, e  a constante de permissividade do vácuo.

            Fluxo magnético[editar | editar código-fonte]

            Dado um campo magnético  o fluxo através de uma superfície  é dado por:
            x
            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli.
            x
            sistema de transições de estados, e estados  de Graceli, 
            x
            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D
            Tem-se que, pela inexistência de monopolos magnéticos, o fluxo  através de superfícies fechadas é nulo. Para superfícies abertas, o fluxo magnético encontra aplicação no fenômeno de indução eletromagnética, descrito pela lei de Faraday:
            x
            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli.
            x
            sistema de transições de estados, e estados  de Graceli, 
            x
            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D
            onde  é a força eletromotriz (fem) induzida. O sinal também pode ser obtido pelo uso da lei de Lenz.














            Observação: é usado textos da wikipédia para mostrar as modificações com as variáveis do sistema decadimensional e categorial Graceli.


            O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

            O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


            Com isto pode-se dividir a física em quatro grandes fases:

            a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




            teoria da relatividade categorial Graceli

            ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli.
            x
            sistema de transições de estados, e estados  de Graceli, 
            x
            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D











            NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


            Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


            Estados térmico.
            Estado quântico.
            De dilatação.
            De entropia.
            De potencia de entropia e relação com dilatação.
            De magnetismo [correntes, momentum e condutividades]..
            De eletricidade [correntes, momentum e condutividades].
            De condutividade.
            De mometum e fluxos variados.
            De potencial inercial da matéria e energia.
            De transformação.
            De comportamento de cargas e interações com elétrons.
            De emaranhamentos e transemaranhamentos.
            De paridades e transparidades.
            De radiação.
            Radioatividade.
            De radioisótopos.
            De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
            De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

            De resistir à temperaturas.
            E transformar em dilatação, interações entre partículas, energias e campos.
            Estado dos padrões de variações e efeitos variacionais.
            Estado de incerteza dos fenômenos e entre as suas interações.


            E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


            E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



            Sobre padrões de entropia.

            Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


            Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


            Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


            A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


            Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


            Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


            Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


            Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


            Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


            Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


            Princípio tempo instabilidade de Graceli.

            Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


            Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


            as dimensões categorias podem ser divididas em cinco formas diversificadas.

            tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



            paradox of the system of ten dimensions and categories of Graceli.



            a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



            that is, categories ground the variables of phenomena and their interactions and transformations.



            and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



            but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



            as well as transitions of energies, phenomena, categories and dimensions.

            paradoxo do sistema de dez dimensões e categorias de Graceli.

            um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

            ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

            e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

            mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

            como também transições de energias, fenômenos, categorias e dimensões.







             = entropia reversível

            postulado categorial e decadimensional Graceli.

            TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


            todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
            matriz categorial Graceli.

            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D


            1] Cosmic space.
            2] Cosmic and quantum time.
            3] Structures.
            4] Energy.
            5] Phenomena.
            6] Potential.
            7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
            8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
            9] thermal specificity, other energies, and structure phenomena, and phase transitions.
            10] action time specificity in physical and quantum processes.




            Sistema decadimensional Graceli.

            1]Espaço cósmico.
            2]Tempo cósmico  e quântico.
            3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
            4]Energias.
            5]Fenômenos.
            6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
            7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
            8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
            9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
            10] especificidade de tempo de ações em processos físicos e quântico.


            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D


            Matriz categorial de Graceli.


            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     Dl


            Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

            [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
            trans-intermecânica de supercondutividade no sistema categorial de Graceli.

            EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

            p it = potentials of interactions and transformations.
            Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

            h e = quantum index and speed of light.

            [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


            EPG = GRACELI POTENTIAL STATUS.

            [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

            , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].

            quarta-feira, 10 de abril de 2019






            A convecção térmica é descrita pela lei do resfriamento de Newton, a qual estabelece que a taxa de perda de calor de um corpo é proporcional à diferença nas temperaturas entre o corpo e seus arredores. A taxa de transferência de calor convectiva é dada na forma da equação diferencial:[8]
            x
            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli.
            x
            sistema de transições de estados, e estados  de Graceli, 
            x
            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D
            onde
            •  é a energia térmica em joules
            •  é o coeficiente de transferência térmica
            •  é a área de superfície pela qual o calor está sendo transferido
            •  é a temperatura da superfície do objeto e interior (uma vez que estas são consideradas como tendo o mesmo valor nesta aproximação)
            •  é a temperatura do ambiente; i.e. a temperatura adequadamente distante da superfície
            •  é o gradiente térmico dependente do tempo entre o ambiente e o objeto.
            O coeficiente de transferência térmica depende das propriedades físicas do fluido, tais como temperatura e da situação física em que ocorre convecção.
            Portanto, o coeficiente de transferência de calor deve ser derivado ou encontrado experimentalmente para cada sistema analisado. Fórmulas e correlações estão disponíveis em muitas referências ao cálculo dos coeficientes de transferência de calor para configurações e fluidos típicos. Para fluxo laminar, o coeficiente de transferência térmica é bastante reduzido quando comparado com os fluxos turbulentos; isto é devido aos fluxos turbulentos com uma camada de película fina de fluido estagnada, sem a mobilidade necessária para a convecção, na superfície de transferência de calor.[3]
            Em algumas circunstâncias, esta forma da lei pode não ser muito precisos, a formulação exata pode exigir uma análise baseada na equação de transferência de calor (transiente) em um meio não homogêneo, ou mal condutor.








            observação: é usado textos da wikipédia para mostrar as modificações com as variáveis do sistema decadimensional e categorial Graceli.



            teoria da relatividade categorial Graceli

            ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


            Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
            x
            sistema de dez dimensões de Graceli.
            x
            sistema de transições de estados, e estados  de Graceli, 
            x
            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D











            NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


            Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


            Estados térmico.
            Estado quântico.
            De dilatação.
            De entropia.
            De potencia de entropia e relação com dilatação.
            De magnetismo [correntes, momentum e condutividades]..
            De eletricidade [correntes, momentum e condutividades].
            De condutividade.
            De mometum e fluxos variados.
            De potencial inercial da matéria e energia.
            De transformação.
            De comportamento de cargas e interações com elétrons.
            De emaranhamentos e transemaranhamentos.
            De paridades e transparidades.
            De radiação.
            Radioatividade.
            De radioisótopos.
            De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
            De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

            De resistir à temperaturas.
            E transformar em dilatação, interações entre partículas, energias e campos.
            Estado dos padrões de variações e efeitos variacionais.
            Estado de incerteza dos fenômenos e entre as suas interações.


            E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


            E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



            Sobre padrões de entropia.

            Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


            Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


            Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


            A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


            Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


            Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


            Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


            Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


            Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


            Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


            Princípio tempo instabilidade de Graceli.

            Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


            Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


            as dimensões categorias podem ser divididas em cinco formas diversificadas.

            tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



            paradox of the system of ten dimensions and categories of Graceli.



            a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



            that is, categories ground the variables of phenomena and their interactions and transformations.



            and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



            but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



            as well as transitions of energies, phenomena, categories and dimensions.

            paradoxo do sistema de dez dimensões e categorias de Graceli.

            um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

            ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

            e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

            mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

            como também transições de energias, fenômenos, categorias e dimensões.







             = entropia reversível

            postulado categorial e decadimensional Graceli.

            TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


            todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
            matriz categorial Graceli.

            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D


            1] Cosmic space.
            2] Cosmic and quantum time.
            3] Structures.
            4] Energy.
            5] Phenomena.
            6] Potential.
            7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
            8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
            9] thermal specificity, other energies, and structure phenomena, and phase transitions.
            10] action time specificity in physical and quantum processes.




            Sistema decadimensional Graceli.

            1]Espaço cósmico.
            2]Tempo cósmico  e quântico.
            3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
            4]Energias.
            5]Fenômenos.
            6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
            7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
            8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
            9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
            10] especificidade de tempo de ações em processos físicos e quântico.


            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     D


            Matriz categorial de Graceli.


            T l    T l     E l       Fl         dfG l   
            N l    El                 tf l
            P l    Ml                 tfefel 
            Ta l   Rl
                     Ll
                     Dl


            Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

            [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
            trans-intermecânica de supercondutividade no sistema categorial de Graceli.

            EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

            p it = potentials of interactions and transformations.
            Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

            h e = quantum index and speed of light.

            [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


            EPG = GRACELI POTENTIAL STATUS.

            [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

            , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].


            Comentários

            Postagens mais visitadas deste blog

            TEORAIS E FILOSOFIAS DE GRACELI 188

            TEORAIS E FILOSOFIAS DE GRACELI 186

            TEORAIS E FILOSOFIAS DE GRACELI 184